
OpenFst: A General and Efficient Weighted
Finite-State Transducer Library

(Invited Talk)

Cyril Allauzen1, Michael Riley2,3, Johan Schalkwyk2, Wojciech Skut2, and
Mehryar Mohri1

1 Courant Institute of Mathematical Sciences
251 Mercer ST, New York, NY 10012, USA

{allauzen,mohri}@cs.nyu.edu
2 Google, Inc.

111 Eighth AV, New York, NY 10011, USA
{riley,johans,wojciech}@google.com

3 Corresponding author

Abstract. We describe OpenFst, an open-source library for weighted
finite-state transducers (WFSTs). OpenFst consists of a C++ template
library with efficient WFST representations and over twenty-five oper-
ations for constructing, combining, optimizing, and searching them. At
the shell-command level, there are corresponding transducer file repre-
sentations and programs that operate on them. OpenFst is designed to be
both very efficient in time and space and to scale to very large problems.
This library has key applications speech, image, and natural language
processing, pattern and string matching, and machine learning.
We give an overview of the library, examples of its use, details of its
design that allow customizing the labels, states, and weights and the
lazy evaluation of many of its operations.
Further information and a download of the OpenFst library can be ob-
tained from http://www.openfst.org.

Key words: weighted automata, finite-state transducers, rational power series

1 Introduction

A weighted finite-state transducer (WFST) is a finite automaton for which each
transition has an input label, an output label, and a weight. Figure 1 depicts a
weighted finite state transducer:

0 1a:x/0.5
b:y/1.5

2/3.5c:z/2.5

Figure 1. An example weighted finite-state transducer.

The initial state is labeled 0. The final state is 2 with final weight of 3.5. Any
state with non-infinite final weight is a final state. There is a transition from

Semiring Set ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1
Probability R+ + × 0 1
Log R ∪ {−∞, +∞} ⊕log + +∞ 0
Tropical R ∪ {−∞, +∞} min + +∞ 0
String Σ∗ ∪ {∞} lcp · ∞ ε

Table 1. Semiring examples. ⊕log is defined by: x ⊕log y = − log(e−x + e−y).

state 0 to 1 with input label a, output label x, and weight 0.5. This machine
transduces, for instance, the string ac to xz with weight 6.5 (the sum of the arc
and final weights).

Weighted finite-state transducers have been used in speech recognition and
synthesis, machine translation, optical character recognition, pattern matching,
string processing, machine learning, information extraction and retrieval among
others. Having a comprehensive software library of weighted transducer repre-
sentations and core algorithms is key for using weighted transducers in these
applications and for the development of new algorithms and applications.

To our knowledge, the first such software library was the AT&T FSM Library
developed by Mohri, Pereira, and Riley for their work on transducer algorithms
and applications [1]. It is available from AT&T for non-commercial use as ex-
ecutable binary programs. Since then, there have been various other weighted
transducer library efforts [2–5]. Our motivation for OpenFst was to create a li-
brary as comprehensive and efficient as the AT&T FSM Library, but that was
an open-source project. We also sought to make this library as flexible and cus-
tomizable as possible given the wide range of applications WFSTs have enjoyed
in recent years. It is a C++ template library, allowing it to be both very cus-
tomizable and efficient.

This paper is an overview of this new library. Section 2 introduces some def-
initions and notation. Section 3 describes the representation and construction
of transducers in this library. Section 4 briefly outlines the available algorithms.
Section 5 provides examples of the library’s use and discusses some new, sim-
plified implementations of several algorithms. Section 6 gives more detail about
the transducer representation and discusses the lazy evaluation of algorithms.

The OpenFst library is available for download from http://www.openfst.org
and is released under the Apache license. Detailed documentation is also avail-
able at this site.

2 Definitions and Notation

The OpenFst Library closely parallels its mathematical foundations in the theory
of rational power series [6–8]. The library user can define the alphabets and
weights that label transitions. The weights may represent any set so long as
they form a semiring.

A semiring (K,⊕,⊗, 0, 1) is specified by a set of values K, two binary op-
erations ⊕ and ⊗, and two designated values 0 and 1. The operation ⊕ is as-

2

sociative, commutative, and has 0 as identity. The operation ⊗ is associative,
has identity 1, distributes with respect to ⊕, and has 0 as annihilator: for all
a ∈ K, a ⊗ 0 = 0 ⊗ a = 0. If ⊗ is also commutative, we say that the semiring is
commutative.

Table 1 lists some common semirings. All but the last are defined over subsets
of the real numbers (extended with positive and negative infinity). In addition
to the familiar Boolean semiring, and the probability semiring used to combine
probabilities, two semirings often used in applications are the log semiring which
is isomorphic to the probability semiring via the negative-log mapping, and the
tropical semiring which is similar to the log semiring except the ⊕ operation is
min. The left (right) string semiring, which is defined over strings, has longest
common prefix (suffix) and concatenation as its operations, and has the (ex-
tended element) infinite string and the empty string for its identity elements. It
only distributes on the left (right).

A weighted finite-state transducer T = (A,B, Q, I, F, E, λ, ρ) over a semiring
K is specified by a finite input alphabet A, a finite output alphabet B, a finite
set of states Q, a set of initial states I ⊆ Q, a set of final states F ⊆ Q, a finite
set of transitions E ⊆ Q× (A∪ {ε})× (B ∪ {ε})×K×Q, an initial state weight
assignment λ : I → K, and a final state weight assignment ρ : F → K. E[q]
denotes the set of transitions leaving state q ∈ Q.

Given a transition e ∈ E, p[e] denotes its origin or previous state, n[e] its
destination or next state, i[e] its input label, o[e] its output label, and w[e] its
weight. A path π = e1 · · · ek is a sequence of consecutive transitions: n[ei−1] =
p[ei], i = 2, . . . , k. The functions n, p, and w on transitions can be extended
to paths by setting: n[π] = n[ek] and p[π] = p[e1] and by defining the weight
of a path as the ⊗-product of the weights of its constituent transitions: w[π] =
w[e1] ⊗ · · · ⊗ w[ek]. More generally, w is extended to any finite set of paths R
by setting w[R] =

⊕
π∈R w[π]; if the semiring is closed, this is defined even for

infinite R. We denote by P (q, q′) the set of paths from q to q′ and by P (q, x, y, q′)
the set of paths from q to q′ with input label x ∈ A∗ and output label y ∈
B∗. These definitions can be extended to subsets R, R′ ⊆ Q by P (R, R′) =
∪q∈R, q′∈R′P (q, q′), P (R, x, y, R′) = ∪q∈R, q′∈R′P (q, x, y, q′).

A transducer T is regulated if the weight associated by T to any pair of
input-output string (x, y) given by:

[[T]](x, y) =
⊕

π∈P (I,x,y,F)

λ[p[π]] ⊗ w[π] ⊗ ρ[n[π]] (1)

is well-defined and in K. If P (I, x, y, F) = ∅, then T (x, y) = 0. A weighted
transducer without ε-cycles is regulated.

3 Transducer Representation and Construction

In the OpenFst Library, a transducer can be constructed from either the C++
level using class constructors and mutators or from a shell-level program using
a textual file representation. We describe the former here.

3

This C++ code creates the transducer in Figure 1:

// A vector FST is a general mutable FST
VectorFst<StdArc> fst;

// Add state 0 to the initially empty FST and make it the initial state
fst.AddState(); // 1st state will be state 0 (returned by AddState)
fst.SetStart(0); // arg is state ID

// Add two arcs exiting state 0
// Arc constructor args: ilabel, olabel, weight, dest state ID
fst.AddArc(0, StdArc(1, 1, 0.5, 1)); // 1st arg is src state ID
fst.AddArc(0, StdArc(2, 2, 1.5, 1));

// Add state 1 and its arc
fst.AddState();
fst.AddArc(1, StdArc(3, 3, 2.5, 2));

// Add state 2 and set its final weight

fst.AddState();

fst.SetFinal(2, 3.5); // 1st arg is state ID, 2nd arg weight

The steps consist of first constructing an empty VectorFst, which is a
general-purpose transducer that uses an adjacency list representation (stored
in STL vectors). Next, its mutator member functions are used to add states and
transitions (‘arcs’) and to set the intial state4 and final weights. States are identi-
fied by integer labels. The result can be saved to a file with fst.Write(‘out.fst’).

The VectorFst, like all transducer representations and algorithms in this
library, is templated on the transition type. This permits customization of the
labels, state IDs and weights in a transducer. StdArc defines the library-standard
transition representation:

struct StdArc {
typedef int Label;
typedef TropicalWeight Weight;

typedef int StateId;

Label ilabel; // Transition input label
Label olabel; // Transition output label
Weight weight; // Transition weight
StateId nextstate; // Transition destination state

};

This uses 32-bit integer labels and state IDs and the class TropicalWeight
for its weight.

A Weight class holds the set element and provides the semiring operations.
TropicalWeightuses a single-precision float to hold the set element, has member
functions that define the identity elements 0 and 1 and has associated functions
Plus and Times that implement ⊕ and ⊗, respectively:

4 Only one initial state is permitted and it has weight 1.

4

class TropicalWeight {
public:
TropicalWeight(float f) : value (f) {}
static TropicalWeight Zero() { return TropicalWeight(Infinity); }
static TropicalWeight One() { return TropicalWeight(0.0); }

private:
float value ;

};

TropicalWeight Plus(TropicalWeight x, TropicalWeight y) {
return w1.value < w2.value ? w1 : w2;

};

The class LogWeight is also defined in this library. Users may define their
own weight classes and transition types. So long as the weights form a semiring,
either a library algorithm will work correctly, or in the case where additional
requirements are placed on the weights (such as commutivity), an error will be
signalled if the condition is not met.

One simple customization is to use smaller or larger precision labels, state IDs
or weights for a more compact or higher capacity representation, respectively.
A less trivial extension is to use the ProductWeight template, also provided by
the library:

template <typename W1, typename W2>

class ProductWeight {
public:
ProductWeight(W1 w1, W2 w2) : value1 (w1), value2 (w2) {}
static ProductWeight Zero() {

return ProductWeight(W1::Zero(), W2::Zero());
}
static ProductWeight One() {

return ProductWeight(W1::One(), W2::One());
}

private:
W1 value1 ;
W2 value2 ;

};

For instance, the product semiring of the tropical semiring with itself can be
created with

ProductWeight<TropicalWeight, TropicalWeight>.

Defined over (R ∪ {−∞, +∞}) × (R ∪ {−∞, +∞}), this weight class could be
used, for example, in speech recognition applications to store both the acoustic
and language model scores in recognizer output hypothesis set (‘lattice’).

Another example of a semiring defined on pairs is the expectation semiring.
Let K denote (R∪{+∞,−∞})×(R∪{+∞,−∞}). For pairs (x1, y1) and (x2, y2)
in K, define the following:

(x1, y1) ⊕ (x2, y2) = (x1 + x2, y1 + y2)

(x1, y1) ⊗ (x2, y2) = (x1x2, x1y2 + x2y1)

5

The system (K,⊕,⊗, (0, 0), (1, 0)) defines a commutative semiring. [9] show how
to use this semiring to compute the relative entropy between probabilistic au-
tomata. This algorithm is trivially implemented in this library by adding the
expectation semiring and using the intersection and shortest-distance library
algorithms.

4 Transducer Algorithms

4.1 Algorithm Implementation Types

The algorithms in the library fall into three implementation types. The destruc-
tive algorithms modify in place. e.g., “Invert(&fst)”. The constructive algo-
rithms copy their result into a provided mutable transducer, e.g., “Reverse(fst,
&inverted fst)”. Both have a complexity that is a function of the number of
states and transitions in the result. The lazy (or delayed) algorithms are sepa-
rate transducer C++ classes, e.g., “InvertFst<StdArc> inverted fst(fst)”.
They do no computation on construction and their complexity is a function of
the number of states and transitions visited. This is useful in applications where
the whole result may not be visited, e.g., with Dijsktra’s algorithm (with pos-
itive weights) or in a pruned search. In Section 6, the implementation of lazy
algorithms is described.

4.2 Available Algorithms

The library provides over twenty-five transducer operations. We briefly describe
some of them below.

Table 2 shows the library operations for the sum, product, and Kleene closure
of weighted transducers. Both destructive implementations, using the Thompson
construction, and lazy implementations are provided.

Operation Definition

Union [[T1 ⊕ T2]](x, y) = [[T1]](x, y) ⊕ [[T2]](x, y)

Concat [[T1 ⊗ T2]](x, y) =
M

x=x1x2,y=y1y2

[[T1]](x1, y1) ⊗ [[T2]](x2, y2)

Closure [[T ∗]](x, y) =
∞M

n=0

[[T]]n(x, y)

Table 2. The rational operations.

Table 3 shows the elementary unary operations for reversing the strings in
an automaton, inverting a transduction, and projecting a transduction onto its
domain or range. Invert and Project have both destrucive and lazy imple-
mentations, while Reverse has a constructive implementation. In Section 6, we
outline the implementation of both forms of Invert.

6

Operation Definition and Notation Lazy

Reverse [[eT]](x, y) = [[T]](ex, ey) No
Invert [[T−1]](x, y) = [[T]](y, x) Yes

Project [[A]](x) =
M

y

[[T]](x, y) Yes

Table 3. Elementary unary operations.

Table 4 shows several binary operations based on the composition algorithm:
the composition of transducers, the intersection of acceptors, and the difference
of an acceptor and an unweighted, deterministic acceptor [6, 7]. Composition is
a fundamental operation used to apply or cascade transductions (see Section 5).
All have lazy implementations.

Operation Definition and Notation Condition

Compose [[T1 ◦ T2]](x, y) =
M

z

[[T1]](x, z) ⊗ [[T2]](z, y) K commutative

Intersect [[A1 ∩ A2]](x) = [[A1]](x) ⊗ [[A2]](x) K commutative
Difference [[A1 − A2]](x) = [[A1 ∩ A2]](x) A2 unweighted &

deterministic
Table 4. Fundamental binary operations.

Table 5 shows operations that optimize transducers: trimming, epsilon-removal,
and weighted determinization and minimization. Several of these algorithms have
specific semiring conditions for their use. Not all weighted transducers can be
determinized [10–12].

Operation Description Lazy

Connect Removes non-accessible/non-coaccessible states No
RmEpsilon Removes ε-transitions Yes
Determinize Creates equivalent deterministic transducr Yes
Minimize Creates equivalent minimal deterministic transducer No

Table 5. Optimization operations.

Table 6 shows operations for sorting a transducer’s transitions or states, for
pushing their weights and labels toward the initial or final states, for placing all
input ε’s after the non-ε’s and for synchronizing the ε delay [13, 12].

Operation Description Lazy

TopSort Topologically sorts an acyclic transducer No
ArcSort Sorts state’s arcs given an order relation Yes
Push Creates equivalent pushed/stochastic machine No
EpsNormalize Places input ε’s after non-ε’s on paths No
Synchronize Produces monotone ε delay Yes

Table 6. Normalization operations.

7

Table 7 shows operations that search for shortest paths or distances in a
weighted automaton or prune away states and transitions on paths that have
weights that exceed a threshold [13].

Operation Description

ShortestPath Finds n-shortest paths
ShortestDistance Finds single-source shortest-distances
Prune Prunes states and transitions by path weight

Table 7. Search operations.

Usage information, graphical examples, and complexities of all library opera-
tions are provided in the documentation available at http://www.openfst.org.

5 Examples

In this section, we give examples of the use of the library algorithms. First, we
give a simple example of transducer application:

// Reads in an input FST.
StdFst *input = StdFst::Read("input.fst");

// Reads in the transduction model.
StdFst *model = StdFst::Read("model.fst");

// The FSTs must be sorted along the dimensions they will be joined.
// In fact, only one needs to be so sorted.
// This could have instead been done for “model.fst” when it was created.
ArcSort(input, StdOLabelCompare());
ArcSort(model, StdILabelCompare());

// Container for composition result.
StdVectorFst result;

// Create the composed FST
Compose(*input, *model, &result);

// Just keeps the output labels

Project(&result, PROJECT OUTPUT);

An input automaton and a transducer to which the input will be applied
are first read from files. Then these automata are sorted as required by the
composition algorithm. Next, they are composed and the result is projected
onto the output labels.

Next we give an example of using different semirings to compute the shortest
distance from the initial state to each state q [13]:

// Tropical semiring
Fst<StdArc> *input = Fst<StdArc>::Read("input.fst");
vector<StdArc::Weight> distance;
ShortestDistance(*input, &distance);

8

// Log semiring
Fst<LogArc> *input = Fst::Read("input.fst");
vector<LogArc::Weight> distance;
ShortestDistance(*input, &distance);

// Right string semiring
typedef StringArc<TropicalWeight, STRING RIGHT> SR;
Fst<SR> *input = Fst::Read("input.fst");

vector<SR::Weight> distance;
ShortestDistance(*input, &distance);

// Left string semiring
typedef StringArc<TropicalWeight, STRING LEFT> SL;

Fst<SL> *input = Fst::Read("input.fst");

vector<SL::Weight> distance;

ShortestDistance(*input, &distance);

ERROR: ShortestDistance: Weights need to be right distributive

With the tropical semiring, the minimum path weight to q is computed.
With the log semiring, the (log) sum of path weights to q is computed. With the
right string semiring, the longest common suffix among paths to q is computed.
With the left string semiring, an error is signalled, since the semiring is only
left-distributive.

We have represented a transition as:

e ∈ Q × (A ∪ {ε}) × (B ∪ {ε}) × K × Q.

This treats the input and output labels symmetrically, is space-efficient since
there is a single output-label per transition, and is the natural representation
for the composition algorithm whose efficiency is critical in many applications.
However, an alternative representation of a transition is:

e ∈ Q × (A ∪ {ε})× B∗ × K × Q.

or equivalently,

e ∈ Q × (A ∪ {ε})× K
′ × Q, K

′ = B∗ × K.

This treats string and K outputs uniformly and is the natural representation
for weighted transducer determinization, minimization, label pushing, and ep-
silon normalization [10, 11, 13, 12]. Implementing these algorithms in the original
transition representation is awkward and complex.

We can use the alternative transition representation in this library, combining
each transitions output label and weight into a new product weight, with:

typedef ProductWeight〈StringWeight,TropicalWeight〉CompositeWeight;

The following shows how this composite weight is used to implement weighted
determinization:

9

Fst<StdArc> *input = Fst::Read("input.fst");

// Converts into alternative transition representation

MapFst<StdArc, CompositeArc> composite(*input, ToCompositeMapper);

WeightedDeterminizeFst<CompositeArc> det(composite);

// Ensures only one output label per transition (functional input)
FactorWeightFst<CompositeArc> factor(det);

// Converts back from alternative transition representation

MapFst<CompositeArc> result(factor, FromCompositeMapper);

First, the input is converted to the alternate representation using an op-
eration that maps a conversion function (object) across all transitions. Next,
generic weighted (acceptor) determiniztaion is applied, and then the result is
converted back to the original transition representation. Performance is not sac-
rificed given efficient lazy computation and string semiring implementations.
Weighted transducer minimization, label pushing and epsilon normalization are
easily implemented in a similar way using this change of transition represen-
tation and the generic (acceptor) weighted minimization, weight pushing, and
ε-removal algorithms.

6 Transducer Class Design and Lazy Evaluation

In this section, the details of the transducer representations used and the im-
plementation of lazy evaluation are described. In this library there are many
transducer represenations. Some are mutable containers like VectorFst, oth-
ers are immutable containers like ConstFst, while others implement the lazy
evaluation of operations like InvertFst. They all share the abstract base Fst
class:

template <class Arc>
class Fst {
public:
virtual StateId Start() const = 0; // Initial state
virtual Weight Final(StateId) const = 0; // State’s final weight
static Fst<Arc> *Read(const string filename);

}

Two companion classes, StateIterator and ArcIterator, are defined that
each have methods Next, Done, and Value. These classes provide the minimum
information needed to specify a transducer. This includes its initial state, final
weights, and operations to step through the states of the transducer and the
transitions of a state. Any class that derives from Fst and correctly implements
these methods can be used with any algorithm that accepts this base type as its
argument.

The destructive algorithms mutate their input. They use as arguments an-
other abstract class, MutableFst, that derives from Fst. This class adds meth-
ods SetStart, SetFinal. AddState, and AddArc and has a companion class
MutableArcIterator that adds method SetValue to ArcIterator.

10

The following shows the implementation of destructive Invert using these
classes. The states and transitions are traversed and the input and output
swapped in place:

template <class Arc> void Invert(MutableFst<Arc> *fst) {
for (StateIterator< MutableFst<Arc> > siter(*fst);

!siter.Done();
siter.Next()) {
StateId s = siter.Value();

for (MutableArcIterator< MutableFst<Arc> > aiter(fst, s);
!aiter.Done();
aiter.Next()) {
Arc arc = aiter.Value();
Label l = arc.ilabel;
arc.ilabel = arc.olabel;

arc.olabel = l;
aiter.SetValue(arc);

}
}

}

The following shows the implementation of lazy InvertFst:

template <class Arc> class InvertFst : public Fst<Arc> {
public:

virtual StateId Start() const { return fst ->Start(); }
· · ·

private:

const Fst<Arc> *fst ;
}

template <class F> Arc ArcIterator<F>::Value() const {
Arc arc = arcs [i];
Label l = arc.ilabel;

arc.ilabel = arc.olabel;
arc.olabel = l;
return arc;

}

This is a new class that derives from Fst. It forwards most of its methods
to the input transducer. However, its companion ArcIterator swaps the input
and output labels when a transition is requested. Note the input transducer is
not modified and no computation is performed until requested. While the lazy
inversion operation is trivial, more complex operations like composition and
determinization are naturally implemented in this way as well.

7 Conclusion

This paper has presented an overview of a new comprehensive and flexible
weighted finite-state transducer library whose source code is freely available. We

11

encourage readers to visit http://www.openfst.org to download the library.
There is an easy-to-use shell-level interface that we did not describe here, but
that is documented on the web site and is a good place to start. It is our hope
that others will find this library useful in the years to come.

Acknowledgments

The research of Cyril Allauzen and Mehryar Mohri was partially supported by
the New York State Office of Science Technology and Academic Research (NYS-
TAR). This project was also sponsored in part by the Department of the Army
Award Number W81XWH-04-1-0307. The U.S. Army Medical Research Acqui-
sition Activity, 820 Chandler Street, Fort Detrick MD 21702-5014 is the award-
ing and administering acquisition office. The content of this material does not
necessarily reflect the position or the policy of the Government and no official
endorsement should be inferred.

References

1. Mohri, M., Pereira, F., Riley, M.: The design principles of a weighted finite-state
transducer library. Theoretical Computer Science 231 (2000) 17–32

2. Adant, A.: WFST: a finite-state template library in C++ .
http://membres.lycos.fr/adant/tfe (2000)

3. Hetherington, L.: The MIT finite-state transducer toolkit for speech and language
processing. In: Proceedings of the ICSLP, Jeju, South Korea (2004)

4. Kanthak, S., Ney, H.: FSA: An efficient and flexible C++ toolkit for finite state
automata using on-demand computation. In: Proceedings of 42nd Meeting of the
ACL. (2004) 510–517

5. Lombardy, S., Régis-Gianas, Y., Sakarovitch, J.: Introducing VAUCANSON. The-
oretical Computer Science 328 (2004) 77–96

6. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Springer-Verlag, New York (1978)

7. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Number 5 in EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, Germany
(1986)

8. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer-Verlag,
Berlin-New York (1988)

9. Cortes, C., Mohri, M., Rastogi, A., Riley, M.: On the computation of the rela-
tive entropy of probabilistic automata. International Journal of Foundations of
Computer Science (2007)

10. Mohri, M.: Finite-state transducers in language and speech processing. Computa-
tional Linguistics 23 (1997)

11. Mohri, M.: Minimization algorithms for sequential transducers. Theoretical Com-
puter Science 234 (2000) 177–201

12. Mohri, M.: Generic epsilon-removal and input epsilon-normalization algorithms for
weighted transducers. International Journal of Foundations of Computer Science
13 (2002) 29–143

13. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems.
Journal of Automata, Languages and Combinatorics 7 (2002) 321–350

12

